
158 REVIEWS AND DESCRIPTIONS OF TABLES AND BOOKS 

point mantissa. The tabulated values are exact to within two units in the last 
place. 

The above integrals are also known in closed form [4]. However, the expresions 
for them are not as convenient for computations as the quadrature formulas. 
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This pamphlet contains Gaussian quadrature formulas of the form 
0 ~~~~~~~n 

f (1 + sin x)f(x) dx - E Ak f(xk) 
O ~~~~~~~k-1 

/ (1 + cos x)f(x) dx - E Ak f(xk) 
k-1 

which are exact whenever 

f (x) = (1 +X)-8$ i0,1, 1 2n -1. 

Values of Xk and Ak are given for n = 1, , 8 for the following values of the 
parameter s: 

s 4 
)5 =I 2,x,9, 7i,2, , X , 3, Y, V,I , i, :VI 4. 

The Xk are given to between 8 and 10 significant figures and the Ak to between 5 
and 11. 

These formulas can also be used to approxirnate integrals of the form 

f f(x) sin ax dx, f f(x) cos ax dx. 

This is done by writing these as 

f f(y) sin y dy, f 0(y) cos ydy, 

ax = y K y() = i - )I a ao/ 

and approxim-ating 
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(Y) dy 

by some other method. Then, for example, 

+(y) siny dy = f (1 + sin y)p(y) dy - f 0(y)dy. 
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One of the major problems of the modern mathematical theory of control 
processes can be posed in the following terms: "Given a vector differential equation 
dx/dt = g(x, y), x(0) = c, where x represents the state of a physical system at 
time t, the state vector, and y(t) represents the control vector, determine y(t) so 
as to minimize a given scalar functional J f- h(x, y, t) dt, where x and y are 

subject to local constraints of the form ri(x, y) < 0, i = 1, 2, * , N, global 
constraints of the form Jo hi(x, y) dt < k*, and terminal conditions of the form 
fi(x(T), y(T), T) ? 0." In some cases of importance, T itself depends upon the 
history of the process, T - T(x, y), and, indeed, may be the quantity we wish to 
minimize. 

The book under review represents a fine and substantial contribution to a new 
mathematical domain. The major theme of the work is the "maximum principle," 
an analytic condition which provides important information concerning the struc- 
ture of extremals, in the terminology of the calculus of variations, or of optimal 
policies, in the parlance of dynamic programming and control theory. 

Since the book is an excellent one that will be widely read and used, it is worth- 
while to analyze its objectives and results carefully within the framework of the 
classical theory of the calculus of variations, and with the desiderata of modern 
control theory in mind. 

In the simplest version of classical variational theory, there are no local or 
global constraints. The first variation yields the Euler equation, generally a non- 
linear differential equation, with two-point boundary conditions. For a variety of 
reasons, this direct approach is seldom effective computationally. If global con- 
straints are present, Lagrange multipliers may be used to reduce the problem to 
one without constraints, at the expense of further computational difficulties. 

If local constraints of the type indicated above are present, as they are in a large 
number of the most important classes of processes, the situation is even more 
complex. This is due to the fact that sometimes the Euler equation holds and some- 
times the constraints determine the extremal, or policy. Hence, the analytic and 
computational difficulties that existed before, as far as effective algorithms for the 
solution are concerned, are now compounded. 

Nevertheless, analogues and extensions of the classical results can be obtained. 
The pioneering work is that of Valentine [1]. Results of Valentine were used by 
Hestenes in some unpublished work on constrained trajectories in 1949. In 1961 


